
Laplacian Texture Synthesis and Mixing on Surfaces

Qing Wu Lin Shi Stephen Bond Yizhou Yu
Department of Computer Science

University of Illinois at Urbana-Champaign

Abstract

In neighborhood-based texture synthesis, adjacent local
regions need to satisfy color continuity constraints in order
to avoid visible seams. Such continuity constraints seriously
restrict the variability of synthesized textures, making it im-
possible to generate new textures by mixing multiple input
textures with very different base colors. In this paper, we
propose to relax such restrictions and decompose synthesis
into two relatively disjoint stages. In the first stage, an in-
termediate synthesized texture is generated by only consid-
ering the high frequency details during region search and
matching. Such a scheme broadens the search space during
texture synthesis, but may produce obvious seams due to
large discontinuities in low frequency components. In the
second stage, instead of performing local feathering along
these discontinuities, we perform Laplacian texture recon-
struction, which retains the high frequency details but com-
putes new consistent low frequency components to eliminate
the seams. It does not only affect texels close to the discon-
tinuities, but also modifies the rest of the texels. Therefore,
it can be viewed as a global feature-preserving smoothing
step, and is more effective than local feathering. Experi-
ments indicate that our two-stage synthesis can produce de-
sirable results for regular texture synthesis as well as texture
mixing from multiple sources.

1 Introduction

Texture synthesis has been widely recognized as an im-
portant research topic in computer graphics. Early texture
synthesis algorithms were based on global statistical mod-
els [9, 18, 30]. Instead of enforcing global statistics, pre-
serving the local arrangement of pixels has proven to be
more effective in terms of visual quality. This intuition
led to the recent neighborhood-based search-and-copy algo-
rithms [7, 24, 1, 13, 10] and their optimized versions [6, 12].
Given a small texture example, these algorithms can pro-
duce larger textures that have similar texture elements and
structures as the given example. Every output texture from

such neighborhood-based texture synthesis is essentially a
spatial rearrangement of the original local regions in the
given example. When there is only a single small texture
example, the number of possible rearrangements is actually
limited because adjacent local regions need to satisfy conti-
nuity restrictions.

We propose to relax such neighborhood-based texture
synthesis along two directions to improve the variability of
the synthesized results without compromising their visual
quality. First, relax the continuity restrictions. Previously,
adjacent local regions in the output texture are typically re-
quired to have pixelwise color similarity in their overlap-
ping portion. When a new local region needs to be chosen
from the texture example, such a stringent condition results
in a very small number of candidates and quite often zero
candidates. We suggest to relax such region matching by
focusing on the high frequency components only and over-
looking the average color and intensity. Indeed, it is the high
frequency components that play the most important role in
characterizing a texture.

Second, allow multiple input texture examples. Sam-
pling local regions from a single small texture example can
only produce very limited variability. Ideally, example-
based synthesis should generate results by sampling a large
database. However, different textures may be acquired by
different imaging devices and/or settings, under different il-
lumination conditions, etc. Even the same real-world tex-
ture, such as grass, can appear very different in different
texture images. Effectively sampling, matching and mix-
ing local regions from multiple texture examples simulta-
neously is nontrivial.

In this paper, we focus on surface texture synthesis and
propose a novel two-stage synthesis approach to accommo-
date these two relaxations. In the first stage, an intermedi-
ate synthesized texture is generated by only considering the
high frequency details during region search and matching.
It is achieved by using both features and rectified versions
of the input textures. Each pixel value in the rectified tex-
tures is defined by its original value normalized by the ac-
cumulated intensity within a neighborhood. Such a scheme
broadens the search space during texture synthesis. It facili-

tates sampling local regions from different texture examples
as well as placing regions with very different average col-
ors and intensities next to each other in the output texture.
However, this intermediate texture has obvious seams due
to large discontinuities in low frequency components.

In the second stage, to seamlessly mix local regions to-
gether and create smooth transitions among them, we per-
form Laplacian texture reconstruction which is in the same
spirit of Poisson image editing [16] and related surface
editing [20, 27]. It retains the high frequency details, but
computes new consistent low frequency components for
all local regions so that the seams among them disappear.
Therefore, it can be viewed as a global feature-preserving
smoothing step, and is more effective than local feathering.
The Laplacian operator extracts local differential quantities
which represent high frequency texture details. Given the
Laplacian of the intermediate texture, we set up a sparse
linear system with the new texture colors as the unknowns.
The solution of this system not only retains the original tex-
ture details, but also provides a consistent coloring to all
the texels in the synthesized texture without discontinuities
along the boundaries of adjacent regions.

��� ������� 	
��

This paper is partially inspired by the recent success
of texture synthesis [9, 4, 18, 30, 7, 24, 2, 1, 13, 6, 10,
5, 29, 12, 14, 26]. In 2D texture synthesis, many algo-
rithms model textures as Markov Random Fields and gen-
erate textures by probability sampling [30, 7, 24]. Some
algorithms model textures as a set of features, and gen-
erate new images by matching feature statistics, such as
histograms and co-occurrences, potentially across multiple
resolutions [9, 4, 18, 2]. Recently, patch-based texture syn-
thesis [13, 6, 12, 26] achieved better results than the previ-
ous methods in terms of both quality and efficiency. Feature
continuity on the boundary of two adjacent patches is an im-
portant issue and [6, 12, 26] have attempted to alleviate this
problem using dynamic programming, graph cuts, and fea-
ture maps, respectively.

There have also been quite a few works [22, 25, 19, 29,
15, 3, 28] on generalizing 2D texture synthesis onto meshes
with arbitrary topology. The method in [24] was gener-
alized to meshes in [22, 25], which perform hierarchical
vertex-based synthesis. A binary texton mask was intro-
duced in [29] as guidance data to improve synthesis results
and reduce the number of broken features. Patch-based syn-
thesis has also been generalized to meshes [19, 15]. A hier-
archical patch-based approach was presented in [19] while
Magda and Kriegman [15] introduced an efficient synthesis
method on triangle meshes. A very fast synthesis technique
accelerated by precomputed Jump Maps was introduced in
[28]. Neighborhood or patch matching in these methods is

directly based on color differences instead of differences in
high frequency components. In [3], texture synthesis was
further generalized to geometric detail synthesis over mesh
surfaces.

Meanwhile, researchers have synthesized textures from
multiple input examples by mixing together different ele-
ments from them [9, 18, 2, 23, 29]. In [9, 18], texture mix-
tures are synthesized in the domain of steerable pyramids.
In [2], statistical learning trees are used to mix textures. In
[23], new texels in a synthesized mixture are grown by look-
ing at the distances to all the input examples simultaneously.
On the other hand, the technique in [29] focuses on creating
a progressive transition between different texture elements.
However, these texture mixing techniques cannot globally
adjust the colors of the mixed textures to make them more
consistent with each other.

2 Overview

The input to our algorithm is a triangle mesh as well as
one or more texture examples. The output is the same mesh
covered with a texture synthesized from the given exam-
ples. In the case of multiple input textures, the synthesized
texture is a spatial mixture of the texture elements from the
texture examples.

Our Laplacian texture synthesis algorithm has three ba-
sic steps.

1. Apply a revised version of the method in [15] to gen-
erate an initial texture patch assignment on the mesh.
The method in [15] does not directly synthesize tex-
tures on a mesh. Instead, it assigns a triangular texture
patch in the input textures to each triangle in the mesh.
The assigned texture patches of two adjacent triangles
have a certain degree of continuity along their shared
edge. Our revised version tries to emphasize high fre-
quency details, but overlook the differences in the av-
erage colors of local regions. At the end of this step,
each triangle in the mesh is associated with three pairs
of texture coordinates which record the locations of the
corners of its corresponding triangular texture patch in
the input texture examples.

2. Each triangle in the mesh is tesselated with a high-
resolution grid and the assigned texture patch of the
triangle is resampled onto this grid. A graphcut al-
gorithm is further executed to refine the boundary
between two adjacent texture patches so that such
a boundary is not necessarily coincidental with the
shared edge between two adjacent triangles any more.
As a result, the transitions of details among texture
patches are improved though their average colors may
still be quite different.

2

(a) (b) (c)

Figure 1. (a) The original PEBBLES texture. (b) The rectified greyscale image of (a). (c) A feature image
of (a) obtained by filtering.

3. Laplacian texture reconstruction is performed simulta-
neously on all the resampled texture patches from the
previous step to eliminate the color discontinuities be-
tween adjacent patches. The Laplacian at each grid
point is obtained from the original colors in the input
texture examples.

3 Initial Texture Assignment

Our initial texture assignment is based on the method in
[15], where a texton is defined to be a distinct local texture
neighborhood. By clustering all neighborhoods with a fixed
size from the given texture example, a small collection of
textons can be extracted. They are the representatives of the
clusters. During synthesis, triangular texture patches are
grown on the mesh one by one to cover all the triangles.
Note that each triangle in the mesh shares an edge with at
most three adjacent triangles. During each step of synthesis,
this method focuses on one triangle and counts the number
of its adjacent triangles that have been covered with texture.
If none of them has been covered, the current triangle is a
seed and should be covered with a random patch. If one of
them has been covered, we need to search for a texture patch
in the given texture example that agrees well with the tex-
ture on this adjacent patch, which means that the two texton
sequences on the shared edge should be similar. This strat-
egy can be easily generalized to cases where two or three
adjacent triangles are already covered with textures.

To emphasize high frequency details but overlook differ-
ences in average intensity and color, in our revised version
of this method, we utilize a rectified version of each input
texture. The rectified version of a texture is a greyscale im-
age with a normalized intensity value at each pixel. We
set the initial greyscale value at a pixel to be its luminance

value which is a weighted average of the original three color
channels. Suppose we define an � �� neighborhood for
each pixel and the luminance at a neighbor ��� �� is � �� .
The luminance value at each pixel is further normalized by
the accumulated luminance in its neighborhood, which is
�
�

�� �
�
���

���. In this rectified texture, we essentially have
removed the low frequency components, but retained the
important high frequency details. We only use greyscale
values because they are weighted averages of three color
channels and contain high frequency details from all of
them. In practice, using greyscale values indeed can pro-
duce better matching results than using three independent
color channels. An example of a rectified texture is shown
in Fig. 1(b). In practice, we set the size of the neighbor-
hoods to be ��� ��.

In addition to the rectified textures, we also obtain a fea-
ture image for each of the input texture examples. We first
apply bilateral filtering [21] to remove noise while preserv-
ing features. In the bilateral filter, the scale of the closeness
function �� is set to 2.0, and the scale of the similarity func-
tion �� is set to 10 out of 256 greyscale levels. We then use
finite differences along the two image axes as a simple gra-
dient estimator to obtain an edge response at every pixel.
The pixelwise gradient estimation is used to form the fea-
ture images. An example of a feature image is shown in Fig.
1(c).

In our revised version of the method in [15], we use these
rectified textures along with the feature images as the input
to texton clustering. Thus, the neighborhood correspond-
ing to each texton has a normalized greyscale pattern and
a feature pattern. Both patterns emphasize high frequency
details. In practice, weighted versions of these patterns are
used for texton clustering. The weight for the greyscale pat-
tern is set to 1.0, and the weight for the feature pattern is

3

O

QR

P

D

BA

F
E

C

B’

C’

P’

Q’
R’

A’

Input Texture

(a) (b) (c)

Figure 2. (a) A fine grid defined within a triangle. (b) A graphcut is performed inside the quadrilat-
eral region ��	
 to obtain a refined boundary between the two adjacent texture patches. (c) An
extended hexagonal texture patch corresponding to ��
� in (b).

set to 0.3. These weighted patterns are treated as different
channels of the same texture neighborhood during texton
clustering. Once we have the collection of textons, the rest
of the synthesis steps follow [15].

When there are multiple input textures, every time we
need to search for a texture patch for a triangle, we find
the best candidate from each input texture and then choose
among them the one with the highest matching score. Usu-
ally, we would like to set up for each input texture a target
percentage in the output texture. To approximately control
the synthesis process using these target percentages, we de-
fine a Gaussian function for each input. The standard devi-
ation of the Gaussian is set to be the target percentage of the
input texture. The function value of the Gaussian is used to
modulate the matching score. When the actual percentage
is lower than the target percentage, the Gaussian returns a
large value which does not obviously affect the matching
score; when the actual percentage is higher than the target
percentage, the Gaussian returns a small value which sig-
nificantly decreases the matching score. Thus, these Gaus-
sian functions implicitly control the likelihood of sampling
a specific input texture.

4 Texture Resampling and Boundary Refine-
ment

Since we would like to perform boundary refinement
on the triangular texture patches and Laplacian reconstruc-
tion over the entire synthesized texture, indexing the tex-
ture patch for each triangle as three pairs of texture coor-
dinates in the input texture space becomes insufficient. To
facilitate these later steps, we resample the texture patches

(a) (b)

Figure 3. (a) Initial texture patch assignment
result with two of the seams indicated by ar-
rows. (b) Result obtained from boundary re-
finement with Graphcut.

onto a high-resolution grid over the original mesh surface.
The high-resolution grid within each triangle is set up us-
ing barycentric coordinates as shown in Fig. 2(a). That is,
every edge of the triangle has the same number of sample
points. We actually further enforce that all edges in the tri-
angle mesh have the same number of sample points. Thus,
the subgrids within two adjacent triangles coincide on their
shared edge to avoid T-junctions. If the original triangle
mesh has some overly large or elongated triangles, we split
those triangles in a preprocessing step while avoiding T-
junctions.

We resample the texture patches previously assigned to
the triangles onto this high-resolution grid. As shown in
Fig. 2(b)-(c), suppose a triangle ��
� in the mesh has

4

a corresponding triangular texture patch �� �
�� � in one
of the input texture examples. To facilitate boundary re-
finement at a later step, we actually resample an area larger
than ���
�� �. Suppose ��
�, �
� and ���� are
the three triangles adjacent to ��
�. Their centers are
	 , � and �, respectively. We first flatten these three trian-
gles onto the same plane where ��
� resides and obtain
the new locations of their centers. From these new loca-
tions, we can further obtain their corresponding locations
	 �, �� and �� in the 2D texture space. We resample the
entire hexagonal area ��	 �
���� ��� in the texture space
onto the corresponding region, �	
���, of the high-
resolution grid. Thus, each resampled texture patch of a
triangle extends into its three adjacent triangles. Suppose
the center of��
� is�. During this resampling,���
,
��
� and ���� not only obtain color values from the
texture patch originally assigned to ��
�, but also obtain
a second color value from the extended hexagonal patches
corresponding to the three adjacent triangles of ��
�.

During initial texture patch assignment discussed in the
previous section, each triangle is assigned a triangular tex-
ture patch. The boundary between two adjacent texture
patches coincide with the shared edge of their correspond-
ing triangles. In a subsequent boundary refinement proce-
dure, we apply the graphcut algorithm in [12] to refine the
boundaries between resampled texture patches on the high-
resolution grid. We need to take into account the extended
hexagonal texture patches to perform this procedure. Con-
sider triangles ��
� and ��
� in Fig. 2(b). Suppose
their hexagonal texture patches are ��	� and ��	� , re-
spectively. These two texture patches have an overlapping
quadrilateral region, ��	
. We set up a minimum graph
cut problem as follows. The grid points closest to �� and
�
 are constrained to have colors from the texture patch
��	� while the grid points closest to 	� and	
 are con-
strained to have colors from the patch ��	� . The vertices
� and
 also have fixed colors. We then seek a minimum
graph cut between � and
 and within the region ��	
.
The algorithm in [12] is applied to find this cut which can
provide a better transition between the high frequency de-
tails of the two texture patches than the original boundary.
The grid points falling on the same side of the cut as �
obtain colors from patch ��	� while the grid points on
the other side of the cut obtain colors from patch ��	� .
Note that we still use the rectified textures during bound-
ary refinement because the original texture colors may have
large discontinuities along the triangle edges, which prevent
the graphcut algorithm to find a different cut that provides
better transition for high frequency details. Fig. 3(a)-(b)
demonstrate the effectiveness of this boundary refinement
procedure.

Since the colors of the mesh vertices are not refined
at all during the aforementioned boundary refinement, we

iv

0i
v

1i
v

2i
v

3i
v

4i
v

0i
e

1i
e 2i

e

3i
e

4i
e

Figure 4. The 1-ring structure of a vertex, ��.

also designed another graphcut procedure specifically tai-
lored for them. We first define an umbrella region centered
at each vertex, and then flatten that region onto a param-
eterization plane. A subsequent graph cut is performed in
this flattened region to refine the boundaries of the texture
patches there. However, in our experiments, we have not
observed any obvious improvements in visual quality due
to this vertex-centric refinement. Therefore, we leave it as
an optional step.

5 Laplacian Texture Reconstruction

The synthesis process in the previous sections focuses on
high frequency details. We call the surface texture synthe-
sized by the previous steps the intermediate texture. There
are obvious seams inbetween adjacent texture patches in the
intermediate texture because of discontinuities in the low
frequency components. To remove these large discontinu-
ities while still preserving high frequency texture details,
we present a texture reconstruction technique based on the
Laplacian operator which encodes high frequency features.
Given the estimated Laplacians of the intermediate texture,
the reconstruction process tries to obtain a new continuous
surface texture which can reproduce the Laplacians. The
reconstruction process uses the high-resolution grid previ-
ously generated for texture resampling.

�� � 	������� ��������� ������
�

The Laplacian of a vertex �� in the high-resolution grid
is computed by collecting the colors of its 1-ring neighbors
as shown in Fig. 4. To compensate the non-uniform shape
of the triangles, Fujiwara weights [8] are used:

����� � �
�

����	���

�

���
��� � ��� �� (1)

where ��� is a vertex directly connected to ��, ��� represents
the edge length between �� and ��� , �� and ��� represent

5

the colors at the vertices, and ���� represents the number
of neighboring vertices of ��. This Laplacian operator can
also be rewritten as:

����� � �
�

����	���

�
 ������� ������ �� (2)

where �
 ������� ������ � �
�

����
��� � ��� � �

�
������

��� �

������. �
 ������� ������ � only involves the three vertices
of a triangular face in the 1-ring structure of � �. This for-
mulation allows us to consider the Laplacian operator as a
summation of these facewise terms.

Since we would like to remove discontinuities along
patch boundaries but still preserve original high frequency
features within the texture patches, it is desirable to have
spatially adaptive smoothing. To achieve this goal, we de-
signed a weighted Laplacian operator which imposes poten-
tially different weights on the edges. Eqs. (1) and (2) thus
become

������ � �
�

����	���

���

���
��� � ��� � (3)

� �
�

����	���

�
�������� ������ �� (4)

where ��� is a positive weight for the edge between �� and
��� , and �
�������� ������� is also a facewise term similar
to �
 ������� �������. If both �� and ��� are from the same
texture patch, we simply set ��� � �; otherwise, ��� can
be either smaller or larger than 1. If the weight of an edge
is less than �, the bonding between the two vertices of the
edge is weakened, and there is less smoothing across the
edge. Too small a weight may increase the stiffness of the
resulting linear system discussed in the next section.

�� ��������� ���
��������
�

Given the Laplacians of the intermediate texture, we
would like to reconstruct a new texture with the same Lapla-
cians. Therefore, we set up a linear system with one equa-
tion per vertex. The equation for vertex � � is expressed as

�
�

����	���

�
���

����
������� ��

�����

������
����������� � ��� (5)

where �� and ��� represent unknown vertex colors in the
new texture we would like to solve and �� represents the
estimated Laplacian of the intermediate texture at � � us-
ing Eq. (3). The left hand side of this equation is actu-
ally the weighted Laplacian of the unknown new texture at
��. Since the weighted Laplacian is a linear operator, this
equation is a linear equation of the unknown vertex colors.
Note that if the textures have three color channels, there are
three equations for each vertex. The collection of equations

for all the vertices form a sparse linear system which has a
symmetric coefficient matrix. Since the Laplacian operator
is translation invariant, we need to fix the color of at least
one vertex in order to obtain a unique solution of the linear
system. Such fixed colors essentially form a boundary con-
dition of the equations. Efficient iterative solvers [17] are a
good choice for such a sparse linear system. In practice, we
use a preconditioned (Incomplete Choleskey Factorization)
conjugate gradient method [11].

5.2.1 Laplacian Estimation at Patch Boundaries

There are additional details concerning the estimation of
the right hand side of Eq. (5) since the intermediate tex-
ture consists of patches with discontinuities on their bound-
aries. According to Eq. (3), the weighted Laplacian of a
vertex can be estimated by accumulating a simpler term,
�
�������� ������ �, over all the triangular faces surround-
ing the vertex. However, a triangle may stride two or more
texture patches. We summarize the estimation of this term
as follows.

� If ��, ��� and ����� belong to the same patch, we di-
rectly use their colors to estimate �
�������� ������ �.

� If the three vertices belong to two different patches,
we should not directly use their existing colors because
there may be a large gap among them. Since there must
be a dominant patch having two of the three vertices,
during the estimation of �

�������� ������ �, the color
of the third vertex should be taken from an extended
version of the dominant patch to avoid large gaps.

� If the three vertices belong to three different patches,
we simply randomly choose a dominant patch from the
three. The colors of the other two vertices are taken
from an extended version of that dominant patch.

5.2.2 Global Reconstruction

When the average brightness and color of the patches in
the intermediate texture differ significantly (e.g. when they
are from different complicated textures), we set up a sparse
boundary condition and simultaneously solve the system of
equations in (5) to remove the differences. As mentioned
earlier, the boundary condition should consist of at least one
constraint on the variables. A simple equality constraint
is declared by setting the color of a vertex to be a fixed
value. Such constraints reduce the number of variables in
the linear system. The reduced linear system has a unique
solution. The user can choose to interactively specify such
constraints. In the absence of user-defined constraints, our
program chooses to fix the colors at the centers of a random
subset of the patches in the mesh. A more sophisticated
constraint is defined by setting a linear combination of the

6

vertex colors to be a fixed value. For example, we experi-
mented with setting the average of all vertex colors to be a
fixed value. Such linear constraints can be integrated into
the linear system by considering them as additional equa-
tions. When there is exactly one linear constraint, the re-
sulting enhanced linear system has a unique solution which
defines a globally continuous new surface texture. When
there is more than one linear constraints, the system be-
comes overdetermined, and a least-squares solution should
be obtained.

5.2.3 Local Reconstruction

When the average brightness and color of the patches in the
intermediate texture are similar (e.g. when they are all from
the same sample texture), locally reconstructing the texture
can produce good results with much less computational cost
than the global reconstruction. This is done by imposing
color constraints on all the boundary vertices of the texture
patches. The constrained color for every boundary vertex
�� is computed by simply blending the existing colors in its
1-ring structure,

�
������� �
�

����

�

����	���

��� � (6)

where the neighboring vertices of � �, �����, may belong
to different patches. These dense color constraints effec-
tively disconnect the texture patches from each other. The
resulting linear system can be solved patch by patch. In
practice, this scheme is a few times faster than the global
reconstruction. Nevertheless, it only propagates informa-
tion within each texture patch, which makes it better than
local feathering along the patch boundaries but prevents it
from resolving color differences on patches that are remote
to each other. Therefore, this local scheme provides a trade-
off between quality and efficiency.

Fig. 5 demonstrates the visual quality of both local and
global texture reconstruction. In the intermediate textures,
there are obvious seams among the patches due to differ-
ences in low frequency components. Local Laplacian re-
construction can certainly remove these seams and create
smooth transitions among the patches. However, it fails
to produce large-scale changes that would make the base
colors of the patches more consistent. On the other hand,
global Laplacian reconstruction can perform such large-
scale changes and produce more desirable results. To fully
test the capability of global reconstruction, in the last ex-
ample shown in Fig. 5, we artificially add a large random
color shift to every texture patch in the intermediate texture.
Global reconstruction can successfully remove these large
color shifts and recover a consistent base color for all the
patches. The reconstructed surface texture appears similar
to the original input texture.

mesh vertices/faces # grid vertices/faces

Bunny 2503 / 5002 640258 / 1280512
Camel 2444 / 4884 625154 / 1250304
Pawn 510 / 1016 130050 / 260096

V-shape 170 / 336 43010 / 86016

Table 1. The number of vertices and faces of
the original meshes and their corresponding
fine grids used in this paper.

Initial Refinement Local / Global Lapl

Bunny 8 5 13 / 25
Camel 3 4 13 / 28
Pawn � 1 1 2 / 4.5

Table 2. The average running times (in sec-
onds) of different stages of our algorithm on
three meshes. These times were measured
on a 3.2GHz AMD processor. ”Initial” refers
to the initial texture patch assignment stage;
”Refinement” refers to the texture resam-
pling and boundary refinement stage; ”Lo-
cal/Global Lapl” refers to local and global
Laplacian texture reconstruction.

6 Additional Experimental Results

We have conducted a large number of experiments on
surface texture synthesis and mixing using the algorithm de-
veloped in this paper. Besides the examples shown in Fig.
5, we show a few additional results in Fig. 6. The first
example in Fig. 6 gives a good demonstration on the fact
that our algorithm can significantly improve the variability
of the synthesized textures. The original FLOWERS texture
has too few color variations. Extending such a texture over a
large surface area would not make the result very appealing.
By mixing it with the two leaf textures, the synthesized re-
sults become more interesting. In the first row of Fig. 6, the
left one is the local reconstruction result while the right one
is the global reconstruction result. In this particular case,
both of them look interesting. The local result retains the
rich colors of the three input textures while the global result
has a smooth and subtle color change over the entire mesh.

The statistics of the meshes used in this paper are sum-
marized in Table 1. The running times of various stages of
our algorithm are also summarized in Table 2.

7 Conclusions

In this paper, we proposed to decompose texture synthe-
sis into two relatively disjoint stages. In the first stage, an in-

7

termediate synthesized texture is generated by only consid-
ering the high frequency details during neighborhood search
and matching. In the second stage, we perform Laplacian
texture reconstruction which retains the high frequency de-
tails but computes consistent low frequency components. It
does not only affect texels close to discontinuities, but also
modifies the rest of the texels. Therefore, it can be viewed as
a global feature-preserving smoothing step, and is more ef-
fective than local feathering. Experiments indicate that our
two-stage synthesis can produce desirable results for regu-
lar texture synthesis as well as texture mixing from multiple
sources. In future, we would like to implement Laplacian
reconstruction and other time-consuming steps on GPUs to
achieve interactive performance.

Acknowledgments

This work was partially supported by National Science
Foundation (CCR-0132970) and UIUC Research Board.
The authors would like to thank Shen Dong and Sebastian
Magda for their helpful suggestions.

References

[1] M. Ashikhmin. Synthesizing natural textures. In ACM Sym-
posium on Interactive 3D Graphics, pages 217–226, 2001.

[2] Z. Bar-Joseph, R. El-Yaniv, D. Lischinski, and M. Werman.
Texture mixing and texture movie synthesis using statistical
learning. IEEE Transactions on Visualization and Computer
Graphics, 7(2):120–135, 2001.

[3] P. Bhat, S. Ingram, and G. Turk. Geometric texture synthe-
sis by examples. In Eurographics Symposium on Geometry
Processing, 2004.

[4] J. D. Bonet. Multiresolution sampling procedure for analysis
and synthesis of texture images. In Proc. of Siggraph, pages
361–368, 1997.

[5] J. Dischler, K. Maritaud, B. Levy, and D. Ghazanfarpour.
Texture particles. Computer Graphics Forum, 21(3):401–
410, 2002.

[6] A. Efros and W. Freeman. Image quilting for texture synthe-
sis and transfer. In SIGGRAPH’01, pages 341–346, 2001.

[7] A. Efros and T. Leung. Texture synthesis by non-parametric
sampling. In Intl. Conf. Computer Vision, pages 1033–1038,
1999.

[8] K. Fujiwara. Eigenvalues of laplacians on a closed rieman-
nian manifold and its nets. In Proceedings of the American
Mathematical Society, pages 123:2585–2594, 1995.

[9] D. Heeger and J. Bergen. Pyramid-based texture analy-
sis/synthesis. In Proc. of SIGGRAPH, pages 229–238, 1995.

[10] A. Hertzmann, C. Jacobs, N. Oliver, B. Curless, and
D. Salesin. Image analogies. In SIGGRAPH’01, pages 327–
340, 2001.

[11] D. Kershaw. The incomplete cholesky–conjugate gradi-
ent method for the iterative solution of systems of linear
equations. Journal of Computational Physics, 26(1):43–65,
1978.

[12] V. Kwatra, A. Schödl, I. Essa, G. Turk, and A. Bobick.
Graphcut textures: Image and video synthesis using graph
cuts. ACM Transactions on Graphics, 22(3):277–286, 2003.

[13] L. Liang, C. Liu, Y. Xu, B. Guo, and H.-Y. Shum. Real-time
texture synthesis using patch-based sampling. ACM Trans.
Graphics, 20(3):127–150, 2001.

[14] Y. Liu, W.-C. Lin, and J. Hays. Near-regular texture anal-
ysis and manipulation. ACM Transactions on Graphics,
23(3):366–374, 2004.

[15] S. Magda and D. Kriegman. Fast texture synthesis on ar-
bitrary meshes. In Eurographics Symposium on Rendering,
pages 82–89, 2003.

[16] P. Perez, M. Gangnet, and A. Blake. Poisson image editing.
ACM Trans. on Graphics, 22:313–318, 2003.

[17] Y. Saad. Iteragive Methods for Sparse Linear Systems. PWS
Publishing Company, 1996.

[18] E. Simoncelli and J. Portilla. Texture characterization via
joint statistics of wavelet coefficient magnitudes. In Fifth
Intl. Conf. on Image Processing, Vol.1, pages 62–66, 1998.

[19] C. Soler, M.-P. Cani, and A. Angelidis. Hierarchical pattern
mapping. In SIGGRAPH’02, pages 673–680, 2002.

[20] O. Sorkine, D. Cohen-Or, Y. Lipman, M. Alexa, C. Rössl,
and H.-P. Seidel. Laplacian surface editing. In Symposium
of Geometry Processing, 2004.

[21] C. Tomasi and R. Manduchi. Bilateral filtering for gray and
color images. In Proc. Intl. Conf. on Computer Vision, pages
836–846, 1998.

[22] G. Turk. Texture synthesis on surfaces. In SIGGRAPH’01,
pages 347–354, 2001.

[23] L.-Y. Wei. Texture Synthesis by Fixed Neighborhood Search-
ing. PhD thesis, Stanford University, 2001.

[24] L.-Y. Wei and M. Levoy. Fast texture synthesis using tree-
structured vector quantization. In Proceedings of Siggraph,
pages 479–488, 2000.

[25] L.-Y. Wei and M. Levoy. Texture synthesis over arbitrary
manifold surfaces. In SIGGRAPH’01, pages 355–360, 2001.

[26] Q. Wu and Y. Yu. Feature matching and deformation for
texture synthesis. ACM Transactions on Graphics (special
issue for SIGGRAPH 2004), 23(3):362–365, 2004.

[27] Y. Yu, K. Zhou, D. Xu, X. Shi, H. Bao, B. Guo, and H.-
Y. Shum. Mesh editing with poisson-based gradient field
manipulation. ACM Transactions on Graphics (special issue
for SIGGRAPH 2004), 23(3):641–648, 2004.

[28] S. Zelinka and M. Garland. Jump map-based interactive tex-
ture synthesis. ACM Transactions on Graphics, 23(4):929–
1073, 2004.

[29] J. Zhang, K. Zhou, L. Velho, B. Guo, and H.-Y. Shum. Syn-
thesis of progressively-variant textures on arbitrary surfaces.
In SIGGRAPH’03, pages 295–302, 2003.

[30] S. Zhu, Y. Wu, and D. Mumford. Filters, random fields and
maximum entropy (frame)-towards a unified theory for tex-
ture modeling. International Journal of Computer Vision,
27(2):107–126, 1998.

8

(a) (b) (c) (d)

Figure 5. (a) Input texture examples. (b) Synthesized intermediate textures with color discontinuities
among patches. (c) Textures computed from local Laplacian reconstruction. (d) Textures computed
from global Laplacian reconstruction. Note that local reconstruction works reasonably well for the
texture mixture in the first row because the colors of the mixed texture patches are not too different.
However, for the remaining three mixture examples, global reconstruction produces more natural
and consistent low frequency components. The intermediate texture in the last row is artificially
modified by adding a random color shift to each texture patch. Global texture reconstruction can
successfully remove such color shifts.

9

Figure 6. Additional surface texture synthesis and mixing results.

10

